Diffusion injected light emitting diode
نویسنده
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Lauri Riuttanen Name of the doctoral dissertation Diffusion injected light emitting diode Publisher School of Electrical Engineering Unit Department of Microand Nanosciences Series Aalto University publication series DOCTORAL DISSERTATIONS 213/2015 Field of research Optoelectronics Manuscript submitted 10 August 2015 Date of the defence 18 December 2015 Permission to publish granted (date) 17 November 2015 Language English Monograph Article dissertation (summary + original articles) Abstract Lighting plays a major role in consumption of electrical energy in the world. Thus, increasing the efficiency of light sources is one key element in reducing the green house gas emissions. Light emitting diodes (LEDs) are gaining a foothold in general lighting. Despite their rapid development in light output and their superior efficiency compared to other light sources, LEDs still need improvements in order to become the ultimate lighting technology. A typical LED is a double heterojunction (DHJ) structure, in which the active region fabricated from a lower band gap material is sandwiched between higher band gap pand n-doped regions. By biasing such a structure electrons and holes are transferred by current into the active region, where they recombine releasing energy as photons. The carrier injection in a conventional LED structure is typically efficient. However, in more exotic novel structures based on nanowires or near surface nanostructures, fabricating a DHJ becomes difficult. This thesis presents the experimental studies on a novel current injection method for light emitting applications. The method is based on bipolar diffusion of charge carriers. Unlike in the conventional method, the active region does not have to placed between the pand n-layers of the pn-junction. The diffusion injection method is experimentally demonstrated by two types of prototype structures. The first prototype was fabricated using a multi quantum well (MQW) stack buried under the pn-junction. The second prototype was fabricated using a near surface quantum well (QW) placed on top of the pn-junction. The first prototype showed that the diffusion current components can be used to excite an active region outside of the pn-junction. The second prototype showed a large improvement in injection efficiency as well as the suitability of the method for exciting surface structures. The applications of diffusion injection can be found in blue galliun nitride based LEDs studied in this thesis as well as in green solid-state light sources, light sources integrated into silicon technology and devices based on nanostructures and plasmonics.Lighting plays a major role in consumption of electrical energy in the world. Thus, increasing the efficiency of light sources is one key element in reducing the green house gas emissions. Light emitting diodes (LEDs) are gaining a foothold in general lighting. Despite their rapid development in light output and their superior efficiency compared to other light sources, LEDs still need improvements in order to become the ultimate lighting technology. A typical LED is a double heterojunction (DHJ) structure, in which the active region fabricated from a lower band gap material is sandwiched between higher band gap pand n-doped regions. By biasing such a structure electrons and holes are transferred by current into the active region, where they recombine releasing energy as photons. The carrier injection in a conventional LED structure is typically efficient. However, in more exotic novel structures based on nanowires or near surface nanostructures, fabricating a DHJ becomes difficult. This thesis presents the experimental studies on a novel current injection method for light emitting applications. The method is based on bipolar diffusion of charge carriers. Unlike in the conventional method, the active region does not have to placed between the pand n-layers of the pn-junction. The diffusion injection method is experimentally demonstrated by two types of prototype structures. The first prototype was fabricated using a multi quantum well (MQW) stack buried under the pn-junction. The second prototype was fabricated using a near surface quantum well (QW) placed on top of the pn-junction. The first prototype showed that the diffusion current components can be used to excite an active region outside of the pn-junction. The second prototype showed a large improvement in injection efficiency as well as the suitability of the method for exciting surface structures. The applications of diffusion injection can be found in blue galliun nitride based LEDs studied in this thesis as well as in green solid-state light sources, light sources integrated into silicon technology and devices based on nanostructures and plasmonics.
منابع مشابه
Evaluation of the Effect of Protective Sleeve on Output Intensity of Light Emitting Diode Light Cure Units
Aim: The purpose of this study was to compare the difference in the output intensity of Light Emitting Diode (LED) light cure (LC) devices with and without a protective sleeve and its clinical significance. Materials and Methods: The output intensity of 152 LC units in dental offices across the state of Odisha were examined. The collection of related information included an average number of e...
متن کاملInvestigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots
In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to sol...
متن کاملAn electrically injected InAsÕGaAs quantum-dot photonic crystal microcavity light-emitting diode
An electrically injected InAs/GaAs self-organized quantum-dot photonic crystal microcavity light-emitting diode operating at 1.04 mm is demonstrated. Light–current characteristics are obtained for devices with twoand five-defect period cavities with maximum light output of 0.17 mW measured in the surface-normal direction. Near-field images were also obtained for an injection current of 8.35 mA,...
متن کاملDiffusion-Driven Charge Transport in Light Emitting Devices
Almost all modern inorganic light-emitting diode (LED) designs are based on double heterojunctions (DHJs) whose structure and current injection principle have remained essentially unchanged for decades. Although highly efficient devices based on the DHJ design have been developed and commercialized for energy-efficient general lighting, the conventional DHJ design requires burying the active re...
متن کاملCubic GaN Light Emitting Diode Grown by Metalorganic Vapor-Phase Epitaxy
Manuscript received September 27, 1999. Manuscript revised October 20, 1999. † The authors are with NTT Cyber Space Laboratories, Musashino-shi, 180-8585 Japan. a) E-mail: [email protected] SUMMARY We studied Si and Mg doping characteristics in cubic GaN and fabricated a light emitting diode of cubic GaN on a GaAs substrate by metalorganic vapor-phase epitaxy. The diode structure con...
متن کاملComparative evaluation of the effect of Light Emitting Diode (LED) and Quartz Tungsten Halogen (QTH) light curing units on color stability of Filtek Z350 XT
Introduction:Discoloration of the resin-based composites is a common problem in restorative dentistry. There are many factors associated with the discoloration of dental materials in the oral environment. The purpose of this study was to evaluate the color changes in a nano-composite cured with a quartz-tungsten-halogen (QTH) and light emitting diode (LED) unit. Methods:80 disk-shaped specim...
متن کامل